Travelling Trough Education: uncertainty, mathematics and responsability – SKOVSMOSE (Bo)

SKOVSMOSE, O. Travelling Trough Education: uncertainty, mathematics and responsability. Rotterdam: Sense Publishers, 2005. Resenha de: APPELBAUM, Peter. Sobre Incerteza, Dúvida, Responsabilidade e Viagens: um ensaio sobre dois livros de Ole Skovsmose*. Revista  Bolema, Rio Claro (SP), v. 26, n. 42A, p. 359-369, abr. 2012

A natureza crítica da educação matemática representa elevada incerteza. Naturalmente, é possível tentar ignorar esta incerteza. Isto, por exemplo, pode ser feito assumindo que a educação matemática, de alguma forma, pode tornar-se “determinada” a servir algumas funções sociais atrativas quando organizadas em, digamos, um currículo nacional coroado por alguns objetivos bem escolhidos. Mas acho que isso seja uma ilusão. A função da educação matemática não pode ser determinada (ou re-determinada) pela mera introdução de alguns princípios orientadores explicitados no topo do currículo. Mudar o “indeterminismo” da educação matemática não é tarefa fácil. Não existem procedimentos diretos para a “determinação”. As funções da educação matemática dependem dos múltiplos e particulares contextos nos quais o currículo é chamado a agir. Reconhecer a natureza crítica da educação matemática, incluindo nisso todas as incertezas relativas a ela, é uma característica da educação matemática crítica. (SKOVSMOSE, 2005, p.44).

Esta citação de Travelling Through Education, de Ole Skovsmose, é um excelente resumo de muitos de seus trabalhos mais antigos e, ao mesmo tempo, um bom exemplo do que Skovsmose chama, em In Doubt – outro livro recente –, de um conceito explosivo. A Educação Matemática Crítica é, ela mesma, um conceito explosivo, pois algumas tentativas de clarificação dessa expressão frequentemente mostram-se mais complexas e amplas e, talvez, menos claras que a concepção original. Como em inúmeras de suas outras publicações e apresentações, Skovsmose tenta responder ao potencial explosivo desta abordagem a partir de relatos sobre contextos específicos de sala de aula. Outros conceitos explosivos – para ficarmos apenas em alguns exemplos – são reflexão, intenção e ação política. Skovsmose frequentemente vale-se da abordagem filosófica para clarificar esses termos, visando melhor entender o que é possível falar sobre eles, e o que é possível concluir a partir deles. Por conta disso, esses seus livros servem como que para uma introdução à história da filosofia e do pensamento social, tanto quanto como uma provocação para compreender mais profundamente as possibilidades para a educação matemática, em particular, e para a educação, de forma mais geral. A Educação Matemática, durante muito tempo, foi tida como um campo, política e eticamente, neutro, distante de temas como o da justiça social. A concepção hegemônica global sobre matemática torna extremamente difícil introduzir uma educação matemática crítica genuína.

O conjunto das obras de Skovsmose prestou um grande serviço, ajudando as pessoas a questionar seus pressupostos sobre como a matemática funciona em sua estrutura hegemônica. Antes, sequer poderíamos pensar sobre uma educação matemática crítica, que servisse à democracia, à justiça social, ou alguma outra dessas suas intenções, e, mesmo agora, quando essa abordagem pode ser mais profundamente compreendida, ainda esbarra-se no problema de criar uma audiência na qual e a partir da qual este esforço ressoe. A maioria dos educadores matemáticos parece seguir sem pensar muito sobre a forma como os seus esforços podem ou não ser coerentes com suas convicções pessoais. Os dois últimos livros de Skovsmose nos permitem conhecer a trajetória histórica da filosofia e do pensamento social que, por sua vez, nos possibilitam questionar o papel da matemática no projeto de perpetuar concepções muitas vezes equivocadas. Assim, eles nos ajudam a caminhar com Skovsmose na estrada da educação onde “a clarificação de ‘algo’ nos leva a considerar ‘tudo’1” (SKOVSMOSE, 2005, p. 216).

Tendo nos auxiliado a juntar ferramentas e formar um vocabulário que nos permite articular a matemática e a educação matemática em suas potencialidades tanto problemáticas quanto revolucionárias, Skovsmose nos leva a outra discussão. A educação matemática não é mais assumida como tendo uma essência, e a educação matemática crítica pode preocupar-se com as diferentes possibilidades de papéis que a educação matemática desempenha num cenário sócio-político particular. Por exemplo, a educação matemática crítica pode nos ajudar a compreender os modos como a educação matemática estratifica, seleciona, determina e legitima inclusões e exclusões. Ela pode, também, falar sobre si mesma, e indicar os diversos caminhos que o processo de globalização nos leva a percorrer. Além disso, a educação matemática crítica pode tratar da natureza daquelas competências que a educação matemática deve desenvolver. Conhecimento e poder estão conectados, também no que diz respeito à matemática. A aprendizagem, em especial a aprendizagem matemática, pode significar poder, o que facilmente pode passar a significar poder para alguns, já que o processo educativo produz inclusão e exclusão. A esse respeito, Skovsmose argumenta que a educação matemática crítica deve estar atenta à situação do estudante, e considerar o background dos estudantes (Background é outro conceito explosivo). A educação matemática crítica, praticada por educadores matemáticos críticos, deveria, também, estar atenta sobre as possibilidades para o futuro que uma sociedade em particular pode permitir a diferentes grupos de alunos. Um modo de estabelecer uma consciência sobre essas perspectivas é considerar não apenas o background dos estudantes, mas também seus foregrounds. Isto pode nos levar a considerar, mais diretamente, como diferentes sociedades proveem oportunidades (ou dificuldades) para os diferentes grupos, dependendo do gênero, idade, classe, etnia, recursos econômicos e cultura.

A maioria dos educadores concebe a matemática como um conteúdo da prática escolar, mas, concebida como uma disciplina escolar e como um conjunto de práticas culturais, essa matemática torna-se um tópico a ser tematizado pela educação matemática crítica. A matemática em si deve ser considerada – e não apenas de uma perspectiva de ensino, mas também de uma perspectiva filosófica e sociológica – pois ela representa um importante aspecto do desenvolvimento da racionalidade ou da razão, uma enorme variedade de técnicas culturais integradas ao artesanato, às rotinas da vida diária, às ciências, às tecnologias, à economia, ao comércio, à indústria e às conquistas militares em todo o mundo. Mas, além disso, a própria matemática parece representar um aspecto particular da globalização, aquele segundo o qual algumas práticas operam para reduzir ao status de conhecimentos nativos ou indígenas, o que não for conhecimento escolar ou conhecimento legitimado, reforçando, assim, as desigualdades sociais que circunscrevem local versus global. Skovsmose refere-se a estes processos como de segregação2.

Para agir mais diretamente sobre a complexidade da matemática e da globalização, e para responder ao estado atual de práticas de segregação, Skovsmose introduz a noção de matemática em ação, querendo significar uma variedade de técnicas e tecnologias que, em combinação, definem nossa sociedade da informação e estabelecem os espaços nos quais é possível discutir as estruturas de saber-poder em nossa sociedade contemporânea. De um lado, quereremos repensar a natureza da matemática e do pensamento matemático; de outro, podemos identificar os pontos mais significativos da matemática e do pensamento matemático e usá-los quando contestamos a concepção de modernidade e pós-modernidade a partir de um ponto de vista teórico, wittengensteiniano, da matemática-no-uso3. Este trabalho, por sua vez, pode, fundamentalmente, definir a matemática em ação como sendo a matemática. Por exemplo: por meio da matemática podemos representar algumas coisas ainda não existentes e sermos, neste sentido, capazes de identificar alternativas para uma dada situação. Isso não ocorre apenas com a matemática, mas essa é uma característica muito particular dela. A matemática nos permite uma certa liberdade para imaginar possibilidades, gerando conjuntos de situações hipotéticas. Nesse sentido, a matemática é, muitas vezes, um recurso para a inovação tecnológica e para os processos de planejamento tecnológico que desenvolvem algoritmos para tomada de decisão, estando, assim, subjacente a muitos aspectos da sociedade contemporânea. Aqui, temos tanto uma característica definidora da matemática como praticada normalmente por muitas pessoas no mundo, como, implicitamente, uma característica experienciada diariamente, via tecnologias, por ainda mais pessoas no mundo. Esta característica da matemática nos permite considerar um dos focos da educação matemática crítica: o questionamento das práticas sócio-culturais da matemática e o modo como essas práticas se relacionam ao nosso trabalho profissional, em termos dos nossos compromissos com a igualdade, além de servir como base para o desenvolvimento curricular. Quanto ao enfoque teórico, não deveríamos questionar os modos como a tecnologia – como os gabaritos de leitura ótica, os smartphones pessoais, os sistemas de diagnóstico médico, os algoritmos de bem-estar social e qualquer outro uso cotidiano das tecnologias – perpetuam concepções sobre o papel da matemática na definição de conhecimentos e em relação à neutralidade das aplicações tecnológicas? Quanto à base para o desenvolvimento curricular, Skovsmose nos dá exemplos interessantes de maneiras pelas quais os alunos podem aprender ambas, a matemática tradicional e a matemática crítica, ao mesmo tempo, questionando e explorando as tecnologias e os sistemas tecnológicos de tomada de decisão.

Embora alguns possam julgar os exemplos como mera defesa da abordagem das investigações por projetos, os exemplos concretos são bem mais do que meros exemplos possíveis de práticas para as salas de aula: eles nos ajudam a compreender como os alunos podem desenvolver uma compreensão crítica da matemática pautada no currículo vivido4, pautado no desenvolvimento de habilidades e conhecimentos conceituais inseridos numa perspectiva crítica que é radicalmente distinta daquela que poderíamos chamar de educação matemática acrítica ou não crítica. Quando Skovsmose discute a matemática em ação, ele quer que analisemos como as concepções matemáticas são projetadas na realidade. Quando usamos a matemática como base para a tecnologia, criamos dispositivos que, de alguma forma, só são possíveis por meio da matemática.

Em certo sentido, isso já havia sido antecipado no mundo da matemática, mas, agora, essa constatação nos vem de modo muito claro. No entanto, Skovsmose é consciente de que não é possível atribuir à imaginação sociológica as atraentes qualidades atribuídas frequentemente à imaginação tecnológica. Qualquer projeto tecnológico tem implicações que não podem ser identificadas a partir de um raciocínio hipotético. Este é um problema próprio a qualquer tipo de investigação baseada em simulações matemáticas. As implicações das situações realizadas (que são certamente distintas de p), devem ser muito diferentes de q, as implicações calculadas de p. Qualquer raciocínio hipotético pode perder sua credibilidade se tropeçar nos degraus da similaridade, que são construídos no mesmo momento em que a matemática é posta em funcionamento. (É só na bem protegida sala de aula de matemática, onde a realidade virtual dos exercícios define totalmente os problemas a serem resolvidos, que esses problemas não aparecem). O que tendemos a fazer, vivendo em nosso mundovida matematicamente influenciado, matematicamente gerado e matematicamente transformado, é responsabilizar um modelo quando ele falha, ao invés de apreciar o modelo e, ao mesmo tempo, entender os modos pelos quais modelos e representações passam a fazer parte da nossa realidade: “A matemática fundamenta a modulação e a constituição de uma ampla gama de fenômenos sociais e, desse modo, torna-se parte da realidade.” (SKOVSMOSE, 2005, p.90). Vivemos em um ambiente em que interagem, de modo magnífico, modelos baseados numa realidade virtual e uma realidade já construída. Assim, muita tecnologia de informação se materializa em pacotes que podem ser instalados e operar em conjunto com outros pacotes. Todos esses pacotes têm a matemática como ingrediente decisivo. O racional torna-se real, embora nada indique que o real se transforma em racional. Os criadores de modelos parecem justificar-se quanto aos modelos que criam, mas podem alegar não ter nada a ver com as decisões políticas tomadas com os modelos, ou por conta dos modelos.

Quem cria e gerencia o modelo não pode ser responsabilizado pelas decisões políticas tomadas com base no modelo, e os que, do ponto de vista político, são responsáveis pelas tomadas de decisão, afirmam, sempre, ter consultado os especialistas. E assim, em muitos casos, as operações do modelo podem ser mantidas a uma distância conveniente das implicações das ações tomadas com base no e/ou a partir do modelo. As implicações das ações tomadas a partir do modelo dissipam-se do ponto de vista da visibilidade moral. Este é, também, um dos aspectos a ser considerados sobre o modo como a matemática funciona no panorama da tomada de decisão.

Quando consideramos a matemática em ação, consideramos ações. E as ações não podem ser vistas como tendo um valor especial, qualidade, confiabilidade ou credibilidade apenas porque a matemática está nelas envolvida.

Isso leva Skovsmose a considerar o paradoxo da razão: por um lado, a matemática, como uma parte da ciência, parece representar a forma mais refinada de conhecimento. Concebemos a história da matemática como intimamente ligada aos mais impressionantes desenvolvimentos do conhecimento humano e compreensões sobre a natureza. Skovsmose sugere que não devemos considerar a matemática meramente como uma estrutura ou um sistema adequado para processos de modelagem, mas sim como parte de um sistema mais complexo de recursos. Se queremos entender como a ciência opera na sociedade de hoje temos que considerar como o mecanismo da razão opera. Ampliar a visão de tal modo pode não resolver o paradoxo da razão, mas nos ajuda a iluminá-lo. Se não pudermos confiar na razão, uma crítica à razão parece ser necessária.

Paradoxo é outro conceito fundamental no trabalho de Skovsmose. Ele tem falado muito sobre aporia, um conceito recuperado de alguns excertos de Aristóteles e das análises de Platão sobre a irredutibilidade e indecidibilidade de uma ideia. Como parte dessa tradição intelectual, a aporia não é um estado a se superar, visando a recuperar a certeza (seja pela razão, pela força, ou por outros meios), mas uma oportunidade para fazer novas perguntas, para ver as coisas de modos diferentes, e criar novas maneiras de entender a nossa situação, como nos sentimos realizando algo importante, útil, significativo, de forma eficaz e pessoalmente gratificante. No In Doubt, Skovsmose escreve que não é tanto que já não podemos encontrar verdades; o “problema”, ele diz, é que “podemos facilmente ser sobrecarregados com verdades” Na verdade não fazemos nada quando simplesmente estabelecemos uma verdade. “Verdade” é uma coisa muito desinteressante … Verdades interessantes surgem apenas de um processo de busca ou em resposta a alguma preocupação. As verdades interessantes estão vinculadas a uma certa perspectiva. A verdade sem uma preocupação ou uma perspectiva não é, realmente, algo que valha a pena mencionar. (SKOVSMOSE, 2009, p. 103).

Em seus mais recentes livros, Skovsmose está preocupado com o modo como nosso mundo-vida é fabricado pela educação matemática. Considerando a matemática como uma performance, ele indica que devemos nos preocupar com o modo como a matemática organiza as coisas para nós, como a matemática pode estar contaminada por concepções: nosso modo de ver, de ignorar e de acessar o nosso mundo, estando nele, são – no mínimo – parcialmente estruturados pela matemática e pela educação matemática. Nesse sentido a matemática nos dá estratégias, constitui parte dos processos para a tomada de decisão e desempenha papéis significativos na aprendizagem cultural que define nossos gostos e valores relacionados à realidade e ao modo como criamos sentidos, estabelecendo contingências e produzindo objetividades. Assim, parece curioso que alguém possa questionar essa poderosa influência global da matemática e da educação matemática, ao mesmo tempo em que questiona práticas de segregação e estratificação, de inclusão e exclusão, que levam muitas pessoas a ser completamente alijadas de muitos dos conceitos e modelos de raciocínio que a matemática nos promete. Isto é, naturalmente, parte da aporia a que Skovsmose se refere; ao mesmo tempo em que levanta a questão sobre estarmos ou não nos autovalorizando com nossas afirmações sobre a importância da educação matemática. É isso que Skovsmose observa no final do Travelling.

Há a noção foucaultiana de que as práticas profissionais, tais como educação matemática, se autoperpetuam, criando problemas e práticas retroalimentadas numa constante necessidade de especialização profissional.

No entanto, supondo que nossos fazeres têm alguma importância, ao menos para nós e para as pessoas com as quais interagimos, e havendo indicações de que a educação matemática deixa algum tipo de marca no nosso mundovida, devemos aceitar que ela tem condições de dar poder e subtrair poder. Ela tem a capacidade de enrijecer-se e alimentar aspectos problemáticos do desenvolvimento social, mas pode, também, por outro lado, contribuir para a criação de uma cidadania crítica e, deste modo, apoiar ideais democráticos. Os papéis sócio-políticos da matemática não são fixos nem determinados. É nesse sentido que Skovsmose pensa a educação matemática como sendo crítica, e é também neste sentido que ele vê a educação matemática como um conjunto de aporias. A educação matemática crítica não é – nunca foi, ainda que alguns equivocadamente pensem assim – um campo que busca guiar-se pelo progresso ou identificar-se cientificamente com redes de excelência, com as melhores práticas, com os meios mais adequados para se atingir determinada finalidade.

Para trabalhar em educação matemática como educador matemático crítico é necessário preocupar-se com os desafios evocados pela natureza crítica da educação matemática. Desta forma, aqueles que trabalham como educadores matemáticos críticos conduzem seus esforços a partir de um ponto de vista particular, um ponto de vista que, direta ou indiretamente, examina as formas com que os processos de globalização e segregação contaminam a educação matemática, exploram o significado de ir além da modernidade e da pósmodernidade, constroem a matemática como uma matemática em ação, e incluem nessa construção a necessidade de uma preocupação em relação ao poder e ao conhecimento. Estas características do ponto de vista crítico refletem, além disso, a aporetica incerteza em relação às possíveis funções sócio-políticas da educação matemática, que compõem a própria natureza crítica da educação matemática. E esta é, aparentemente, uma dupla aporia – uma qualidade recursiva, auto-reflexiva e aporética dos conceitos explosivos em geral e, em particular, do conceito explosivo que é a educação matemática – que configura a verdadeira complexidade com a qual estamos envolvidos: como uma forma hegemônica de estruturação, a educação matemática não só define o nosso mundo e fabrica a nossa objetividade como é, na verdade, o nosso mundo-vida.

Trabalhar com estas questões é como saltar para fora da Terra a fim de melhor entender o que é a vida na Terra. Mas podemos não ser capazes de sobreviver a um tal processo de investigação… Então, o que devemos fazer? Skovsmose sugere que tomemos a natureza aporética da educação matemática crítica como foco: o Iluminismo presumia uma conexão entre o conhecimento e o progresso, criando a expectativa enganosa de que nosso trabalho, de certo modo, faz diferença. Seríamos capazes de avaliar nossos esforços a partir de critérios pautados no progresso. A situação aporética implica que nenhuma fundamentação, nenhuma crítica da razão (na forma de um apparatus da razão) é suficiente, ainda que não possamos escapar às exigências de uma tal crítica.

Skovsmose afirma que é isso que o leva à pergunta “Como é possível construir uma sensibilidade conceitual para o funcionamento sócio-político da educação matemática e às operações da razão em geral?” (SKOVSMOSE, 2005, p. 214). No Travelling ele sugere nove elementos que deveriam ser temas de nossas preocupações: a matemática, o conhecimento, a reflexão, o aprendizado, os alunos, os conflitos, a matemacia, a segregação e a globalização5. No In Doubt ele se volta para a própria linguagem, sugerindo que estes nove (e outros) termos deveriam pesar significativamente num sistema semiótico de práticas cotidianas, concluindo que esclarecer qualquer um desses termos é uma empreitada explosiva, pois a análise de algo exige considerarmos esse algo em seu contexto, no todo. A aparente impossibilidade de tal trabalho torna-se menos avassaladora ao final do In Doubt, quando Skovsmose evoca o conceito de epoché da fenomenologia, visando a suspender as formas de conhecimento e presunções, dando suporte à percepção direta a fim de estudar a percepção em si. Se tomarmos a matemática e os modos matemáticos de ser e de pensar como características significativas do nosso mundo-vida, podemos, em termos fenomenológicos, reconhecer o desejo aparente de buscar fundamentações, mas, também, de projetar formas de trabalho que exigem refletirmos sobre aspectos particulares de nosso mundo-vida, estando imersos nesse mundo-vida.

E, aqui, podemos começar nossa jornada com Ole Skovsmose: no estudo de nossos mundo-vida, que são tão ricos em incertezas. Skovsmose afirma que nosso mundo-vida está inundado de incertezas, e discute como essa inundação nos leva à questão da responsabilidade. Na verdade, a pergunta existencial evocada pela incerteza é: o que vamos fazer?. Estamos condenados a agir face à incerteza, ou seja, devemos assumir a responsabilidade por aquilo que fazemos, dado o que sabemos e podemos pensar.

Conheci Ole Skovsmose em Berlim, em 1989. Ele era um pesquisador relativamente jovem, com ideias provocativas, e tinha vindo à Alemanha para um seminário de Christine Keitel, apresentar alguns dos seus primeiros trabalhos sobre matemática, tecnologia e democracia. Viajar e compartilhar suas ideias através das culturas já era, então, um aspecto-chave de seus esforços intelectuais.

Eu também era um viajante, um norteamericano vivendo em Berlim enquanto realizava meu doutorado sobre o discurso da educação matemática. Imediatamente percebi a importância da educação matemática crítica e tenho acompanhado de perto o trabalho de Skovsmose ao longo dos anos. Recomendo seus últimos livros e os vejo como uma introdução acessível a muitas das suas ideias. Naquele nosso primeiro encontro, o que me impressionou, enquanto tomávamos café sentados no gramado da Technische Universität, foi a humildade e curiosidade penetrante de Skovsmose; ele não estava interessado em mostrar-se como alguém especial, muito pelo contrário, ele motivava os diálogos interculturais e deles participava, fazendo autocríticas. Na época, senti como se eu, finalmente, tivesse entendido o que alguns antropólogos querem significar com a noção de antropologia como crítica. Nossa conversa não levou nenhum de nós a se tornar um objeto de estudo do outro, mas fomos imediatamente apanhados numa teia de interações Eu-Tu, pensando a matemática e a educação matemática num processo de desenvolvimento. Acredito que os textos de Skovsmose trazem um sabor de diálogo, como aqueles que tive com ele em Berlim. Cada um desses dois livros, dos quais agora apresento a resenha, estende a metáfora da viagem em e pela Educação, enquanto viajamos no e pelo mundo.

Depois de lê-los, o leitor interessado pode, valendo-se das bibliografias, buscar artigos e livros anteriores, escritos durante suas viagens pelo mundo, passando pela Europa, África e América Latina.

Há algo a ser dito sobre os resultados de uma nova educação matemática pós-colonial, que surgiu graças a estudiosos como Skovsmose, acadêmicos preocupados com questões relativas à equidade e ao imperialismo, que dispensaram significativa parte de seu tempo colaborando para além das fronteiras nacionais e culturais. Permanece, na maioria das comunidades nacionais de educação matemática, um forte olhar para dentro, que ignora os tipos de ideias que poderiam resultar de um esforço global em educação matemática crítica.

Mesmo alguns pesquisadores e participantes de conferências internacionais como o ICME (International Congress on Mathematics Education), o CIEAEM (International Commission for the Study and improvement of Mathematics Education), o PME (Psichology of Mathematics Education) etc., em suas apresentações e debates nessas conferências, estão presos nos pântanos de ideologias iluministas e discursos progressistas que, geralmente, ignoram questões relativas à globalização, à segregação, à matematização implícita. Na verdade, desprezam a maioria dos nove nós do discurso da educação matemática crítica que estão no cerne da vida profissional de Skovsmose. Essa constatação, entretanto, não significa que seu trabalho tem tido pouca importância, mas que apenas ele e alguns poucos têm se esforçado para criar o campo da educação matemática crítica. Recebo, então, esses dois livros como uma celebração de sucesso. As histórias que eles trazem são exemplos de comparações internacionais e interculturais, e da reflexão pessoal e analítica que pode acompanhar ou surgir dessas comparações. Os dois livros aqui apresentados são um excelente começo para um cânone deste subcampo, registrando um conjunto de tradições intelectuais, reflexões pessoais e histórias de uma prática que podem ser úteis aos que pretendem aproximar-se da educação matemática crítica. Os que viajam com Skovsmose há mais tempo também têm muito a ganhar com essas novas obras. Esses dois livros são mais acessíveis – financeiramente falando – do que alguns de seus clássicos, como o Toward a Philosophy of Critical Mathematics Education, e incluem novas sínteses de muitas das ideias que o autor tem divulgado em vários textos ao longo dos anos: parece mais fácil pensar sobre essas questões todas se temos à disposição uma atualização tão coerente.

Notas *

Tradução de Thiago Pedro Pinto. Professor da Universidade Federal de Mato Grosso do Sul (UFMS), Campus Campo Grande e doutorando do Programa de Pós-graduação em Educação para a Ciência da UNESP de Bauru. E-mail: thiagopedropinto@yahoo.com.br.

Traduzido do original On Uncertainty, Doubt, Responsibility, and Perpetual Journeys. Review Essay of Two Recent Books from Ole Skovsmose por solicitação do autor e revisado pelo editor da Revista BOLEMA.

1 A frase em inglês tem um jogo de palavras impossível de manter na tradução: “a clarification of ‘something’ brings us to consider ‘everything’”.

2 Ghettoizing.

3 mathematics-in-use.

4 Experienced curriculum.

5 Mathematics, knowledge, reflection, learning, learners, conflict, mathemacy, ghettoizing, and globalization.

Peter Appelbaum – Doutor em Educação pela University of Michigan, Professor de Educação Matemática e EstudosCurriculares e diretor consultivo da Arcádia University, Filadélfia, EUA. Autor de On becoming a teacher and changing with mathematics (2008) e Children´s book for grown-up teachers: reading and writing curriculum theory (2007). E-mail: appelbaum@arcadia.edu.

Acessar publicação original

[MLPDB]

Desafios da Reflexão em Educação Matemática Crítica – SKOVSMOSE (Bo)

SKOVSMOSE, Ole. Desafios da Reflexão em Educação Matemática Crítica. Tradução de Orlando de Andrade Figueiredo e Jonei Cerqueira Barbosa. Campinas: Papirus, 2008. Resenha de: KISTEMANN JR, Marco Aurélio. BOLEMA, v. 23 n. 37, 2010.

Na introdução de seu livro, Ole Skovsmose afirma que a Educação Matemática Crítica está se desenvolvendo, apresenta as etapas de sua evolução e narra como surgiu seu interesse por este tema, nos anos 1970. Segundo Skovsmose (2000, p.12), “a educação crítica desencadeou uma reação contra o currículo conduzido pelo professor e contra as aclamadas neutralidade e objetividade da ciência”.

A idéia de educação crítica espalhou-se por todos os níveis do sistema educacional, influenciando, substancialmente, a educação matemática e o ensino de ciências, fazendo surgir a educação matemática crítica. O autor apresenta de forma sucinta as inspirações teóricas que embasaram a educação crítica e, por extensão, influenciaram a educação matemática crítica. Visando a cumprir o objetivo emancipatório2, cita Paulo Freire referindo-se à relevância da noção de diálogo na caracterização dos processos educacionais. Outra fonte de inspiração importante é a Teoria Crítica elaborada pela Escola de Frankfurt que propaga a idéia de uma educação crítica como uma educação orientada pela emancipação.

Ao longo da Introdução, Skovsmose segue relatando que a abordagem por ele formulada, em contexto europeu, nos anos 1970 e 1980, e apresentada no livro Towards a philosophy of critical mathematics education, de 1994, não se adequava em alguns outros contextos, tendo sido necessário reformulá-la. Visitando o Programa de Pós- Graduação em Educação Matemática da UNESP, em Rio Claro, Skovsmose toma consciência do que pode significar a preocupação da educação matemática com a diversidade e os conflitos culturais. Assevera que distintas correntes de pensamento fazem parte desse enfrentamento e que a noção de globalização suscita uma discussão em torno de qual seria o papel da educação matemática em contextos sócio-políticos, econômicos e culturais distintos.

No primeiro capítulo, “Cenários para Investigação”, o autor relata que, em grande parte das salas de aula, a educação tradicional enquadra-se no que ele denomina “paradigma do exercício”, no qual a premissa central seria a de que em cada exercício existe uma e somente uma resposta correta. Contrapondo-se a esse paradigma, o autor propõe a abordagem de investigação passível de tomar variadas formas.

Para o pesquisador, uma abordagem de investigação relaciona-se diretamente com a educação matemática crítica, no desenvolvimento da materacia, ou seja, desenvolver a capacidade de interpretar e analisar sinais e códigos, de propor e utilizar modelos na vida cotidiana, de elaborar abstrações sobre representações do real, além de cuidar das habilidades matemáticas, preocupando-se com as competências referentes à interpretação e à ação numa situação social e política estruturada pela matemática.

Assim, a educação matemática crítica interessa-se pelo desenvolvimento da educação matemática como suporte da democracia, implicando que os grupos de investigação (microssociedades) de salas de aulas de matemática devem também pautarse por parâmetros democráticos.

Um “cenário para investigação” é uma propriedade relacional envolvendo o professor e seus alunos, mas os alunos são os principais responsáveis pelo processo investigativo. Neste contexto, percebe-se, pelas ideias expostas, que as salas de aula baseadas em cenários para investigação diferem-se significativamente daquelas fundadas no paradigma do exercício. As diferenças entre elas relacionam-se às “referências” que visam a levar os estudantes a produzir significados para atividades e conceitos matemáticos. Categorizando de forma bastante didática, ambas as abordagens, Skovsmose as referencia sob três óticas: a da Matemática Pura, a da Semi-Realidade e a da Realidade. Para cada uma das duas abordagens (a parametrizada pelo paradigma do exercício e a dos cenários de investigação), apresentam-se variados exemplos com rica caracterização, descrevendo as ações docentes e discentes, os tipos de exercícios e os ambientes de sala de aula de matemática onde se desenvolvem as ações. Enfatiza-se, ainda que, os projetos apresentam diferentes aspectos do ambiente de aprendizagem do tipo “Cenários de Investigação”, com amplas referências à realidade das situações. As referências são reais, tornando possível aos alunos produzir diferentes significados para as atividades e não somente para os conceitos.

Fica explícito que o professor, no contexto dos “Cenários”, tem o papel de orientar os alunos nas investigações, de forma que a reflexão crítica sobre a matemática e a modelagem matemática ganha um novo significado. Skovsmose não pretende oferecer uma classificação estática e rígida sobre “Exercícios” e “Cenários para Investigação”, mas, sobretudo, elaborar uma idéia do que sejam “Ambientes de Aprendizagem”, com vista a facilitar as discussões sobre mudanças na Educação Matemática.

Skovsmose (2000) afirma que, em geral, melhorias na educação matemática estão intimamente ligadas à quebra de contrato didático. Quando inicialmente sugeri desafiar o Paradigma do Exercício, isso pode ser visto também como uma sugestão de quebrar o contrato da tradição da matemática escolar. (p. 63)

Da perspectiva dos professores, isso caracteriza o movimento de uma zona de conforto para uma zona de risco3, segundo a terminologia de Penteado. Para Skovsmose, o movimento entre os diferentes ambientes possíveis de aprendizagem e a ênfase especial no Cenário para Investigação causarão certa incerteza que não deve ser eliminada, mas, sobretudo enfrentada, diagnosticada e investigada4.

Encerra-se o primeiro capítulo com questionamentos referentes aos modos de se buscar desenvolver uma Educação Matemática preocupada com a democracia numa sociedade estruturada por tecnologias, uma Educação Matemática que não torne opaca a introdução, aos alunos, do pensamento matemático, mas que os leve a reconhecer suas próprias capacidades matemáticas, conscientizando-se da forma pela qual a Matemática opera em certas estruturas tecnológicas, militares, econômicas e políticas5.

O segundo capítulo – intitulado “Riscos trazem possibilidades” –, uma coautoria com Miriam Godoy Penteado, tem como propósito principal discutir o emprego de computadores em salas de aula. Para tal, os autores optam por usar as noções de Quarto Mundo e sociedade em rede, expressões cunhadas por Manuel Castells6.

Skovsmose e Penteado pretendem analisar a introdução da tecnologia da informação e comunicação (TIC) nas escolas como uma possibilidade para que os jovens aproximemse da sociedade em rede como usuários, bem como discutir possibilidades e implicações da presença da TIC em escolas de fronteira7 com base no caso das escolas brasileiras.

Os pesquisadores discutem de forma bastante aprofundada o modo como os computadores estão sendo usados por um grupo particular de professores de matemática nas escolas estaduais de São Paulo. Tais professores pertencem à Rede Interlink8. São ressaltadas as dificuldades enfrentadas, pelas escolas, para adoção da TIC, uma vez que a estrutura não favorece muitas vezes a participação conjunta de todos os alunos e que há o problema da manutenção das máquinas e, muitas vezes, aqueles causados pela frágil segurança dos estabelecimentos de ensino (PENTEADO; SKOVSMOSE, 2002).

Finalizando o segundo capítulo, dois pontos são explicitados pelos pesquisadores e merecem destaque. O primeiro ressalta que a introdução dos computadores em salas de aula não deve ter como única preocupação os ganhos de aprendizagem, mas sim sua potencialidade de provocar discussões e reflexões de e sobre uma ótica sociopolítica. O segundo ponto diz respeito aos riscos que os professores têm de enfrentar quando da introdução da TIC no seu cotidiano de ensinoaprendizagem (quando vêm à cena as noções das zonas de Risco e de Conforto).

O capítulo terceiro, “Desafios da Reflexão”, inicia-se com a afirmação sobre a dificuldade de se definir “reflexão”. No entanto, Skovsmose desenvolve a noção de reflexão concernente à aprendizagem e à matemática optando por ponderar sobre aquilo que pode servir de objeto de reflexão e, mais especificamente, sobre as reflexões sobre ações. Em seguida, Skovsmose define o que entende por matemática em ação, referindo-se às práticas que incluem a matemática como parte constituinte de si mesmas como, por exemplo, a inovação tecnológica, a produção, a automação, o gerenciamento e a tomada de decisão, as transações financeiras, a estimativa de riscos, as análises de custo-benefício etc. De acordo com o pesquisador, a matemática em ação está implícita em procedimentos mecanizados, o que a torna passível de ser objetos de reflexão.

Neste mesmo capítulo, no tópico “A necessidade da reflexão”, Skovsmose questiona o leitor sobre a necessidade de se refletir sobre a matemática e sobre sua aplicação nos diversos ramos da atividade humana. Oferece ricos argumentos que ratificam a importância das reflexões, buscando refugar dos domínios da matemática qualquer forma de banalidade presente na especialização. No tópico seguinte, o pesquisador ressalta o papel que os sistemas educacionais possuem de suprir mão-deobra qualificada de acordo com uma matriz que representa a demanda social por competências. Finalizando o capítulo, o pesquisador defende alguns pontos primordiais para guiar as discussões acerca das reflexões que devem permear a prática de uma educação matemática crítica e reflexiva.

O penúltimo capítulo, “Racionalidade sob Suspeita”, Skovsmose inicia seu questionamento citando John Dewey sobre a ciência como força motriz do progresso. Para Dewey (1996), o método científico tem resultados pródigos e prolíferos que extrapolam as fronteiras da ciência, e a educação faz progressos quando incorpora esse método do que se conclui, portanto, que a lógica da ciência nos coloca na direção da democracia. O autor do livro aponta duas questões que servirão como guia às considerações deste capítulo: “Como podemos entender os possíveis papéis sociopolíticos da racionalidade baseada em Matemática?” e “Como podemos entender os possíveis papéis sociopolíticos da Educação Matemática?”.

Eximindo-se de abraçar o otimismo exacerbado de Dewey, Skovsmose tece suas análises buscando não partir de premissas alicerçadas sobre a racionalidade baseada em matemática. Para tal faz-se necessário, segundo o pesquisador, esclarecer o que se entende por “racionalidade baseada em matemática”. Para ele, a matemática é a grande representante de um tipo de racionalidade impregnada em nossa tecnonatureza e em nossos mundos-vida. Para defender seu ponto de vista, detalhadamente e de forma precisa, interroga-se sobre como a fabricação de possibilidades, estratégias, fatos, contingências e perspectivas ocorre atreladamente à Matemática.

Ao longo do capítulo, Skovsmose ainda aborda temas relevantes ligados à tradição matemática escolar e às funções dessa tradição em relação aos desenvolvimentos social, econômico e tecnológico. Ressalta que, na sociedade do conhecimento, Classificação e Diferenciação emergem como ações identificadoras de competências, e que a avaliação e a classificação dos alunos, como ocorrem na escola, fazem surgir as constantes preocupações com testes e mensurações, bem como a defesa da noção de competências. Finalizando o capítulo são abordados temas que envolvem a educação matemática e sua prática: filtragem ética, cidadania crítica e empowerment9.

O capítulo 5, “Educação Matemática Crítica rumo ao futuro”, encerra o livro com os seguintes questionamentos de Skovsmose: “A educação matemática crítica representa uma forma de pensamento para a qual não há mais espaço no mundo contemporâneo?” “É ela um resquício de um movimento de esquerda que existiu na educação e está ultrapassado?” “E, se não for, qual é o significado de educação matemática crítica hoje?” “E o que dizer de seu futuro?“. Examina-se a proposição “A educação matemática é crítica” antes de tentar esclarecer, de modo mais definitivo, a noção de “educação matemática crítica”, ressaltando as preocupações dessa matemática crítica os processos de globalização e guetorização, as premissas da modernidade, a “matemática em ação” e suas ponderações sobre poder e matemática, as formas de submissão aplicadas por meio da educação matemática, e a relação entre educação matemática, empowerment e disempowerment (SKOVSMOSE; ALRØ, 2006).

Finalizando o capítulo, o autor tece reflexões acerca das premissas da modernidade, questionando-as e enfatizando não ser possível pressupor que haja uma ligação intrínseca entre o progresso científico e o progresso sociopolítico em geral. Para o pesquisador, conhecimento e poder interpenetram-se, e, no coração dessa interpenetração, encontra-se a “matemática em ação”. Não podemos eliminar a  “matemática em ação” que impulsiona nosso desenvolvimento sociotecnológico, mas é necessário discutir a globalização, a formação de guetos, as propostas de superação das premissas da modernidade, analisar a relação “matemática e poder” e tratar as noções de empowerment e disempowerment sob uma fundamentação teórica e epistemológica sólida. Lidar com tais preocupações implica reconhecer a incerteza: a incerteza acompanha a educação matemática crítica rumo ao futuro.

O livro de Ole Skovsmose, Desafios da Reflexão em Educação Matemática Crítica, é leitura obrigatória para todos os educadores, sejam da área de matemática ou não, pois aborda temas concernentes a práticas docentes, na medida em que tem como objeto as práticas pedagógicas e enfatiza a importância da reflexão nas ações em educação. Skovsmose nos convida a rever posturas e buscar novos caminhos para a escola e a sala de aula de Matemática do século XXI.

Notas

2 O processo emancipatório freireano decorre de uma intencionalidade política declarada e assumida por todos aqueles que são comprometidos com a transformação das condições e de situações de vida e existência de oprimidos, contrariamente ao pessimismo e fatalismo autoritário defendidos pela pósmodernidade e ao mecanismo etapista do marxismo ortodoxo, que afirma o processo de transformação social como sendo certo e inevitável. O objetivo emancipatório defendido por Paulo Freire e, por extensão, por Skovsmose, também contempla o chamado multiculturalismo, no qual o direito de ser e de agir diferente numa sociedade dita democrática, enquanto uma liberdade conquistada de cada cultura, também deve proporcionar um diálogo crítico entre as diversas culturas, tendo por fim ampliar e consolidar os processos de emancipação.

3 Essa noção foi introduzida por Penteado (2004) em seu estudo sobre as experiências do professor num novo meio de aprendizagem no qual os computadores representam um papel crucial. Em particular, quando o professor deixa a zona de risco ele elimina possibilidades de aprendizagem associadas à idéia de computadores como reorganizadores do ambiente de aprendizagem.

4 Os computadores na Educação Matemática têm auxiliado o estabelecimento de novos cenários para investigação, desafiando a autoridade do professor (tradicional) de Matemática. Como descrevem Borba e Villareal (2005), os computadores reorganizam nosso pensamento, influenciando muitas coisas, em particular a forma como o significado é produzido. A idéia completa de “reorganização” liga-se fortemente à idéia de “zona de risco”. De acordo com a pesquisa de Penteado (2004), uma condição importante para os professores se sentirem capazes de atuar na zona de risco é o estabelecimento de novas formas de trabalho colaborativo.

5 A expectativa de Skovsmose estabelece-se na busca de um caminho entre os diferentes ambientes de aprendizagem, proporcionando novos recursos para levar os alunos a agir e a refletir, oferecendo, dessa maneira, uma Educação Matemática de dimensão crítica (SKOVSMOSE, 2000).

6 Quarto Mundo e sociedade em rede são expressões fortemente relacionadas, visto que o Quarto Mundo representa a parcela da sociedade excluída da sociedade de rede. A sociedade em rede é também denominada, muitas vezes, sociedade da informação. A sociedade em rede e o Quarto Mundo estão no centro das discussões sobre inclusão e exclusão.

7 Entende-se por Escolas de Fronteira aqueles estabelecimentos de ensino nos quais tanto a sociedade em rede quanto o Quarto Mundo estão presentes, face a face.

8 A Interlink é uma rede de professores, pesquisadores e licenciandos interessados no uso da TIC em Educação Matemática. Esta rede congrega professores de escolas públicas que dedicam de uma a três horas semanais para atividades pedagógicas conjuntas, a fim de planejarem práticas para a sala de aula.

Adicionalmente, existe um canal de comunicação virtual baseado em ferramentas da internet: e-mail, homepages e a lista de discussão (http://www.rc.unesp.br/igce/matematica/interlk). A maioria das escolas associadas à Rede Interlink representam o que os pesquisadores chamam de Escolas de Fronteira. O objetivo da rede Interlink é explorar a relação entre teoria e prática na educação matemática. Seu foco principal é a implementação do uso de tecnologia da informação e comunicação na constituição de espaços educacionais.O grupo se comunica através de uma lista eletrônica.A rede Interlink é coordenada pela professora Miriam Godoy Penteado, livre-docente do Programa de Pós-Graduação em Educação Matemática, Departamento de Matemática, IGCE – UNESP – Campus de Rio Claro – SP.

9 Este termo significa dar poder a, dinamizar a potencialidade do sujeito ou investir-se de poder para agir.

Referências

BORBA, M.C.; VILLAREAL, M. Humans-with-media and a reorganization of mathematical thinking: information and communication. Technologies, modeling, experimentation and visualization. Nova York: Springer, 2005.

DEWEY, J. Democracy and Education: an introductionto to the philosophy education. Nova York/Londres: Free Press, 1996.

PENTEADO, M.G.; SKOVSMOSE, O. Risks includes possibilities. Publication, Copenhage, Roskilde e Aalborg, Centre for Research in Learning Mathematics, Danish University of Education, Aalborg University, v.1, n.34, p. 63-85, 2002).

PENTEADO, M. G. Redes de trabalho: expansão das possibilidades da informática na educação matemática da escola básica. In: BICUDO, M.A.V; BORBA, M.C. (Orgs.). Educação Matemática em movimento. São Paulo: Cortez, 2004. p. 283-295.

SKOVSMOSE, O. Towards a philosophy of critical mathematics education. Dordrecht: Kluwer Academic Publishers, 1994.

SKOVSMOSE, O. Cenários para investigação. BOLEMA, Rio Claro, v. 13, n.14, p.66- 91, 2000.

SKOVSMOSE, O.; ALRØ, H. Diálogo e Aprendizagem em Educação Matemática. Belo Horizonte: Autêntica, 2006.

Marco Aurélio Kistemann Jr. – Doutorando em Educação Matemática – UNESP – Rio Claro. Email: mathk@ig.com.br

Acessar publicação original

[MLPDB]