Posts com a Tag ‘Brincar’
Brincar e jogar: enlaces teóricos e metodológicos no campo da educação matemática – MUNIZ (Bo)
MUNIZ, C. A. Brincar e jogar: enlaces teóricos e metodológicos no campo da educação matemática. Belo Horizonte: Autêntica, 2010. KISTEMANN JR, Marco Aurélio. BOLEMA, Rio Claro, v. 24, nº 38, p. 297 a 302, abril 2011.
Para o autor Cristiano A. Muniz existe uma representação social da ligação entre o jogo espontâneo e a aprendizagem matemática que se vê marcada por uma dicotomia, qual seja, a de que a aprendizagem matemática liga-se ao trabalho enquanto que o jogo não é considerado um espaço para a Matemática. Para Muniz, a atividade matemática é, na visão infantil, sobretudo, ligada a contextos didáticos e a aprendizagem matemática à situação controlada por um adulto, por um professor.
Essas concepções inauguram o primeiro capítulo do livro. Em seu estudo sobre as atividades matemáticas da criança em jogos espontâneos, o autor buscou compreender qual Matemática é produzida quando a criança não está realizando tarefas escolares sob o controle de um adulto. O autor classifica seu estudo como uma investigação etnomatemática no contexto do mundo lúdico da criança, e seu objeto de estudo são as práticas de atividades matemáticas pela criança envolvida em jogos espontâneos. Em suma, o autor busca analisar o jogo como um virtual mediador de uma cultura matemática, enfatizando que, assim, o jogo se configura como um mediador de conhecimentos, de representações presentes num contexto sociocultural no qual a criança se insere e atua.
No capítulo II, “Jogo e educação matemática: aproximações teóricas possíveis e desejáveis”, o autor faz um estudo teórico sobre as concepções de jogos matemáticos e a Matemática. Esclarece que o objetivo do estudo não é analisar aproximações entre jogo e Matemática, mas analisar distintas associações possíveis entre a Matemática e os jogos que transcendam os denominados pelo autor de “jogos matemáticos”. Muniz relata que duas relações entre jogo e Matemática têm sido bastante difundidas e fundam-se nas noções de discussão/argumentação matemática, considerando também a produção científica da Matemática como uma espécie de jogo, isto é, um jogo produzido por (e reservado aos) uma comunidade específica. Nesse caso, são jogos em que as normas se confundem com as regras formais da Matemática: jogos de reflexão pura e jogos matemáticos ou “jogos de recreação matemática” reservados aos que dominam os saberes matemáticos.
Ciente de que há uma aproximação teórica entre o jogo e a Matemática, a proposta da investigação de Muniz direciona-se no sentido oposto a esta concepção, buscando revelar e analisar a Matemática presente nos jogos realizados pelas crianças. Busca, nesse sentido, delimitar o estudo no espaço de produção matemática de jovens estudantes, em contextos de jogos espontâneos, identificando e analisando a Matemática presente nas produções cognitivas das crianças quando estão livres de regras impostas por uma autoridade adulta. Por fim, o autor enseja discutir qual a natureza da relação entre o sujeito e a atividade matemática quando a criança se insere em contextos socioculturais não escolares.
O terceiro capítulo tem como finalidade precisar o conceito de “jogo”, buscando relacionar a aprendizagem matemática com determinadas atividades denominadas de “Jogos”. O autor visa responder à questão que guia seu estudo, qual seja, o que é, em sua acepção, um jogo. Para o autor, é a partir de um paralelismo entre o mundo real e o mundo imaginário construído durante e a partir da atividade lúdica, que traduz uma representação do mundo sociocultural em que se insere a criança, que se pode interpretar e analisar a atividade matemática presente nos jogos.
Embasado teoricamente nos referenciais de Caillois (1967) e Brougère (1995), Muniz busca responder suas questões partindo de jogos do contexto infantil nos quais as regras exigem, de cada criança e do grupo como um todo, competências matemáticas.
No capítulo IV, intitulado “As atividades matemáticas nos jogos presentes na cultura infantil”, o autor discorre sobre a possibilidade de conexão entre a Matemática e o jogo que, para Muniz, são coisas diferentes, pois o jogo não se constitui como Matemática pura, uma vez que a Matemática é tão somente um dos vários elementos que constituem a atividade do jogo.
Explicita o autor, num dado trecho deste capítulo, que a potencialidade do jogo em relação à Matemática não deve ser tomada como panacéia para os problemas existentes no ensino desta disciplina, asseverando que ao educador matemático reserva-se a incumbência de ter precauções e dúvidas quanto à possibilidade de certas aprendizagens a partir do jogo.
O autor relata, no capítulo V: “O espaço pedagógico na educação matemática”, que as relações entre jogo e Matemática ligam-se a questões epistemológicas associadas, seja quanto à natureza da atividade considerada jogo, seja quanto à concepção sobre a construção do conhecimento matemático explorado. Muniz acredita que na dualidade entre a fonte interna de produção de elementos altamente abstratos da Matemática e a necessidade de uma motivação, interna e externa ao sujeito para a realização da atividade matemática, pode-se vislumbrar uma relevante perspectiva de associação entre jogo e Matemática.
Fica claro neste capítulo que ver os jogos como um dos muitos instrumentos socioculturais de difusão e validação de saberes matemáticos possibilita que a relação entre jogo e Matemática se estabeleça como teoricamente profícua quando se toma como pressuposto que o jogo, assim como a Matemática, realiza-se fora da realidade da materialidade. Em outras palavras, jogo e Matemática se constituem como atividades da mente humana, encontrando-se num mesmo plano epistemológico.
Na seção “Ferramentas de intervenção no contexto da didática da Matemática:o jogo como mediador possível”, o autor busca analisar uma possível aproximação entre jogo e educação matemática, no campo da didática, ao introduzir a noção de situação didática a partir da “Teoria de Situações”2 proposta por Guy Brousseau (1998), teoria que fornece relevantes contribuições acerca do uso de jogos na didática francesa da Matemática.
Concordamos com o autor no que se refere à possibilidade de estabelecimento de uma relação entre o jogo e Matemática. Pode-se estabelecer uma análise a partir da consideração teórica de que o sujeito é, ele mesmo, o responsável pela construção do conhecimento matemático numa dimensão ontológica do desenvolvimento humano. Segundo Muniz, esta construção deve realizar-se em situações em que a atividade matemática se faz presente.
No penúltimo capítulo do livro o autor relata que o interesse pela identificação e compreensão da atividade matemática que as crianças e os jovens desenvolvem quando jogando em grupos e longe do alcance de um educador, levou-o a realizar por quatro anos um estudo etnográfico do contexto lúdico de um grupo multicultural de crianças e jovens que frequentaram a Ludoteca Municipal d’Issy les Loulineaux, na periferia de Paris, na França. O objetivo desse estudo foi analisar a natureza da atividade matemática presente neste grupo. Identificados 1776 jogos que envolviam diretamente conhecimentos matemáticos, o autor selecionou seis que foram jogados em grupo pelas crianças. Muniz apresenta neste quinto capítulo, de forma resumida, os seis jogos, bem como as expectativas suscitadas pelas crianças quanto às atividades matemáticas, levantadas por meio de análise do que era proposto aos jogadores.
Muniz acredita que é mister considerar as atividades cognitivas desenvolvidas no contexto de um jogo como submissas aos conhecimentos socioculturais que o próprio contexto do jogo suscita, bem como daqueles inerentes ao repertório cognitivo da criança. Desse modo, a forma de manipular valores, realizar operações, elaborar e solucionar problemas é determinada não só pela estrutura lúdica, mas também pelos conhecimentos socioculturais que, incorporados pelas crianças, passam a fazer parte do sistema de regras dos jogos.
No último capítulo o autor analisa, inicialmente, o jogo quanto a natureza da atividade matemática que ocorre subjugada ao sistema de regras constituído pelas crianças, além de analisar a liberdade quanto a mudança da estrutura lúdica que elimina a possibilidade de realização de certas atividades Bolema, Rio Claro (SP), v. 24, nº 38, p. 297 a 302, abril 2011 301 matemáticas. Também é do âmbito da análise de Muniz estudar a validade da produção matemática como dependente de um conteúdo qualitativo das ações cognitivas em um jogo. Por fim, Muniz analisa as ações cognitivas que se manifestam no jogo, em muitas situações localmente validadas, não possibilitando, portanto, sua transferência para outros contextos.
De acordo com Muniz, tanto a identificação das potencialidades e dos limites de uma atividade lúdica para o desenvolvimento de uma atividade matemática quanto a interpretação de variados jogos desenvolvidos por crianças de contextos multiculturais são os objetivos principais de sua investigação. Neste contexto, cabe ao educador estar presente no desenvolvimento da atividade lúdica, promovendo observações, reflexões e validações dos procedimentos matemáticos.
O autor confirma a ideia de que se uma estrutura lúdica não é parte essencial do jogo, sua eliminação pelo jogador altera, seguramente, a natureza da atividade matemática desejada por aquele que inicialmente concebeu o jogo e o ofereceu à criança. A análise das atividades matemáticas desenvolvidas nos jogos revelou traços e características importantes da cultura lúdica presente nos jogos em análise. Para Muniz, existe, nos jogos, uma relação dialética entre cultura lúdica e atividade matemática, de modo que essas duas facetas contribuem para a constituição das ações matemáticas das crianças que jogam em um ambiente sem controle externo.
O livro de Cristiano A. Muniz é uma leitura obrigatória não só para os interessados em estudar as relações entre jogo e aprendizagem matemática, pois presenteia o leitor com um rico referencial teórico, apresentando um estudo amplo e complexo sobre como o jogo pode ser um mediador para o conhecimento matemático na medida em que se percebe o jogo a partir da capacidade do sujeito de raciocinar, de comunicar e de transitar entre as tantas dimensões do conhecimento matemático. Entendemos que no jogo a criança é o sujeito responsável pelo desenvolvimento da atividade lúdica, bem como pelas situações que suscitam e geram atividades matemáticas, apresentando subsídios para o desenvolvimento da investigação matemática rumo a uma práxis pedagógica em que o caráter lúdico presentifica-se na sala de aula de matemática. Não podemos deixar de ressalvar uma das conclusões do autor: é necessário considerar, antes de tudo, que a intervenção do adulto no jogo espontâneo da criança, a fim de favorecer aprendizagens matemáticas, pode comprometer a qualidade da experiência lúdica em favor do ensino da Matemática.
Notas
2 Das muitas contribuições da “Teoria das Situações” de Brousseau (1998) destacamos a constatação de que existem situações de construção do conhecimento matemático fora do contexto didático, as denominadas situações adidáticas. Em situações adidáticas o professor não é o mediador do conhecimento matemático, uma vez que a mediação neste contexto realiza-se por meio dos contextos e dos objetos culturais do mundo do aluno.
Referências
BROUGÉRE, G. Jeu et Education. Paris: Editions L’harmattan, 1995.
BROUSSEAU, G. Theories dês Situations Didactiques. Grenoble: La Pensée sauvage, 1998.
CAILLOIS, R. Les jeux et les hommes. Paris: Editions Gallimard, 1967.
Marco Aurélio Kistemann Jr. – Mestre em Educação pela Universidade Federal do Rio de Janeiro/UFRJ. Doutorando em Educação Matemática Universidade Estadual Paulista “Júlio de Mesquita Filho” – UNESP – Rio Claro – SP – Brasil. Endereço para correspondência: Rua 12 A, n. 335, apto – 09, Vila Alemã, CEP: 13506-668, Rio Claro – SP. E-mail: mathk@ig.com.br.
[MLPDB]Freedom to Play: We Made Our Own Fun – LEWIS (CSS)
LEWIS, Norah L. Editor. Freedom to Play: We Made Our Own Fun. Waterloo, ON: Wilfred Laurier University Press, 2002. 224p. Resenha de: MANDZUK, David. Canadian Social Studies, v.39, n.2, p., 2005.
Norah Lewis’ book Freedom to Play echoes a sentiment that is heard increasingly often these days among teachers and t
To her credit, Lewis openly discusses some of the challenges in trying to reconstruct the past with a book like hers. She notes that memories can be faulty as they can be colored with time, subsequent experiences, and frequent retelling [and] contributors tend to be selective in which memories they retain (p. 4). However, the end result is still a reasonable reflection of how things were different at a time when life seemed to be simpler but perhaps was simply different than it is nowadays. As a result of reviewing the countless letters, interviews, and writings, Lewis suggests that there are nine characteristics that distinguish thehe general public. That message is that children used to be better able to make their own fun than today’s children and that the nature of what it means to be a child has drastically changed during our lifetimes. Essentially, Lewis’ book is a compendium of recollections from older Canadians, selections from writings by Canadian authors, and letters written by children during the period from 1900 tFo the mid-1950s at a time when play was very much a part of childhood. The book is sFreedom to Playtructured into six basic sections under the following headings: Go Outside and Play, Playing is Playing When Shared, Playing is Playing Games, Creating Their Own Equipment, Animals: Friends, Foe or Food and There Was Always Something to Do. Overall, Lewis provides the reader with 100 letters, excerpts from interviews, and anecdotes that illustrate how the nature of childhood has changed over time. Interspersed throughout are over 20 photographs that make that distinction even clearer. idyllic world of childhood in the days before television and electronic games became realities: parents regularly sent children out to play to get them out from under foot and to ensure young people got plenty of fresh air and exercise; children in rural and urban areas were free to play, to roam, and to explore and they felt free to do so; many of the games were physically active and were self-organized; toys and equipment were frequently limited but children created or modified whatever was needed to play the game; playing was often more important than winning and therefore, most available children were included; domestic animals played important roles as companions, and wild creatures were sources, of interest, food, and income; holidays were welcome breaks from daily chores and seasonal tasks; although the letter writers highlighted in this book belonged to organizations for children and youth, adults tended not to recall organizations such as The Pathfinders Club, The Maple Leaf Club, and The Young Canada Club to be a vital part of their childhood; and, children of pre-television times do not recall being bored as there was always something to do. On this final point, Lewis points out that children for whom life was difficult – or who were confined in detention camps, residential schools, or crowded inner city areas – tried to adapt what time and materials they had to suit their situation.
In fairness to Lewis, she does try to avoid the tendency to overly romanticize how life used to be and how children used to be treated. She admits that today’s children are probably more knowledgeable and better informed on many topics than were their grandparents (p. 23). She also admits that many of the games and activities discussed in the book such as hopscotch, snow angels, and skipping stones are still as popular today as they were in the past. However, in spite of these provisos, one still gets the impression that she feels that children were better off in the past.
Of the 100 anecdotes and letters, a number are particularly reflective of a time gone by. For example, Helga Erlindson’s A Trip on a Steamer written in 1911 recalls a Victoria Day excursion on Lake Winnipeg that takes an unexpected turn when the captain of the ship drops a party of girls off on an island and does not arrive until almost 12 hours later. A letter from 1944 called Boy Scout Week reminds us of the role that Victory Gardens played during the Second World War. Finally, an anecdote called Charlie Riley’s Pasture for Gopher Shoots reminds us of the perils of gopher hunting and the money that children could make in collecting such things as gopher tails, crows’ eggs and crows’ feet.
Overall, I found reading of this book to be reasonably satisfying. The introduction sets the stage well by providing the necessary context before the reader is allowed to dive into the many letters, interviews and anecdotes and the photographs add authenticity and interest. As interesting as I found the reading, however, I do feel that the book has a number of weaknesses. The most obvious for me is the organizational structure of the book. The six headings simply do not, in my mind, provide enough of a framework for conceptually organizing the book and because the individual sections lack proper introductions, one is left with the impression that more thought could have been put into its overall organization. For this reason and others, I cannot see this book being used by teachers of Social Studies other than as a general interest collection. Therefore, if readers feel like reminiscing and are looking for an easier read, this might be the book for them. If they are looking for more of a critical analysis of how childhood is different now than it was in the past, I suggest that they look elsewhere.
David Mandzuk – Faculty of Education. University of Manitoba. Winnipeg, Manitoba.
[IF]